

Environment Elizade University Hara-Mokin

Department of Civil and Environmental Engineering

Semester: Second Semester

Session: 2018/2019 Session

Course code: CVE 302

Course title: Advanced Hydraulics

Examination time: 24 ours

Units: 2

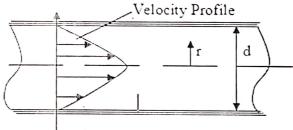
Instruction: Attempt any five questions

Question 1(20 Marks)

- (a) State the general differential form of the continuity equation for fluid flow and reduce this to that of a steady, incompressible fluid flow. (10 Marks).
- (b) Assuming ρ (density) in a two-dimensional flow to be constant, do these flows satisfy continuity?
- (i) u = -2y, v = 3x
- (ii) u = 0, v = 3xy
- (iii) u = 2x, v = -2y

(10 Marks)

Question 2 (20 Marks)


A reservoir of carbon tetrachloride (CCl₄) has a mass of 500kg and a volume of 0.315 m³. Find the carbon tetra-chlorides.

- (i) Weight
- (ii) Mass density
- (iii) Specific weight, and
- (iv) Specific gravity.

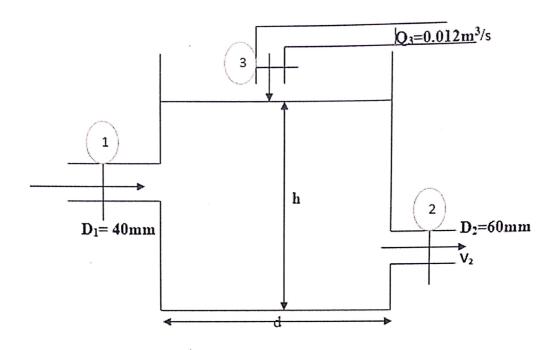
(20 Marks)

Question 3 (20 Marks)

Water is moving through a pipe. The velocity profile at the same section is shown in the figure below and is given

Mathematically as $v = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\mu = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\mu = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\mu = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\mu = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\mu = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\mu = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, β is a constant, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position, r, $\beta = \frac{\beta}{4\mu} (\frac{d^2}{4} - r^2)$ where v is the velocity of water at any position at any position at a constant at a constant

- (a) What is the shear stress at the wall of the pipe due to the water?
- (10 Marks)


(b) What is the shear stress at a position $r = \frac{d}{4}$?

(4 Marks)

(c) If the given profile persists a distance L along the pipe, what drag force is induced on the pipe by the water in the direction of flow over this distance? (6 Marks)

Question 4 (20 Marks)

The water tank is being filled through section 1 at $V_1 = 5$ m/s and through section 3 at $Q_3 = 0.02$ m³/s? (see figure below).

(a) If the water level is constant, determine the exit velocity V₂.

(8 Marks)

- (b) If the water level in the tank varies and $V_2 = 8 \text{ m/s}$, $V_1 = 5 \text{ m/s}$, $Q_3 = 0.012 \text{m}^3/\text{s}$, find the rate of change of level, $\frac{dh}{dt}$. Assume the diameter of the cylindrical tank d = 1.0 m (6 Marks)
- (c) For the general case of flow, given Q_1 , Q_2 , and Q_3 , derive an expression for $\frac{dh}{dt}$ in terms of the volume flows Q_1 , Q_2 , and Q_3 at the three parts.

Question 5 (20 Marks)

- (a) By dimensional analysis, determine the dynamic pressure exerted by a flowing in compressible fluid on an immersed object, assuming pressure is a function of the density and velocity. 10 marks
- (b) Assuming the power delivered to a pump is a function of the unit weight of the fluid, the flow in m³/s and the head delivered. Establish an equation by dimensional analysis. (10 Marks).

Question 6 (20 Marks)

- (a) On what slope should a 610mm vitrified sewer pipe be laid that 0.17 m³/s will flow when the sewer is half full? (10 Marks)
- (b) What will be the slope if the sewer flow full? (use manning's n = 0.013).

(10 Marks)

Question 7 (20 Marks)

- (a) For a given cross-sectional area, determine the best dimensions for a trapezoidal channel. (10 Marks)
- (b) Determine the most efficient section of a trapezoidal channel, n = 0.025, to carry 12.74 m³/s. to prevent scouring, maximum velocity is to be 920mm/s and the side slopes of the trapezoidal channel are 1 vertical to 2 horizontals. What slope S of the channel is required?

(10 Marks)